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Upwelling of a stratified fluid in a rotating annulus: 
steady state. Part 2. Numerical solutions 

By J. S. ALLEN 
Department of Aerospace Engineering, The Pennsylvania State University 

(Received 29 June 1972) 

Numerical solutions of finite-difference approximations to the Navier-Stokes 
equations have been obtained for the axisymmetric motion of a Boussinesq liquid 
in a rigidlybounded rotating annulus. For most of the cases studied, a temperature 
difference is maintained between the top and bottom surfaces such that essenti- 
ally a basic stable density stratification is imposed on the fluid. The side walls 
are thermally insulated .and the motion is driven by a differential rotation of the 
top surface. Approximate steady-state solutions are obtained for various values 
of the Rossby number E and the stratification parameter S = N2/Q2, where N 
is the Brunt-Vaisala frequency and Q is the rotational frequency. The changes 
in the flow field with the variation of these parameters is studied. Particular 
attention is given to an investigation of the meridional, or upwelling, circulation 
and its dependence on the stratification parameter. The effects on the flow of 
different boundary conditions, such as an applied stress driving, specified 
temperature at  the side walls and an applied heat flux at  the top and bottom 
surfaces, are also investigated. 

1. Introduction 
A linear theory for the effect of a stable density stratification on the steady 

motion of a contained rotating fluid has been developed by Barcilon & Pedlosky 
(1967a, 71). The time-dependent behaviour of contained rotating stratified 
fluids has also been studied by several authors (see, for example, Siegmann 
197 1 for references), primarily through an examination of linear-theory solutions 
to the initial-value spin-up problem. 

In view of the interesting flow phenomena that are predicted in these studies 
and of the close relationship of the results to geophysical problems, it appears 
that an investigation of the properties of flows in rotating stratified fluids, under 
conditions where nonlinear effects can be important, would be especially appro- 
priate at  this time. The use of numerical solutions of finite-difference approxima- 
tions to the full governing equations presents a convenient method for this type 
of study and that is the approach we have taken here. 

The problem investigated is the axisymmetric laminar motion of a Boussinesq 
liquid in a rigidly bounded rotating annulus. The axis of the annulus is aligned 
with the (vertical) rotation vector, which is anti-parallel to the gravity vector. 
A temperature difference is maintained between the horizontal top and bottom 
surfaces of the annulus such that essentially a basic stable density stratification 
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is imposed on the fluid. For most of the cases investigated, the (vertical) cylin- 
drical side walls are thermally insulated and the fluid motion is driven mechanic- 
ally by a differential rotation of the top surface. Numerical solutions are obtained 
for the transient response of the fluid, initially in a state of static equilibrium, 
to an impulsively applied differential, rigid rotation of the top surface. Time- 
dependent solutions are calculated by finite-difference approximations to the 
unsteady equations until the flow becomes approximately steady (see 3 5). 
These approximate steady-state solutions are the ones that are presented here. 
The nature of the transient adjustment of the fluidis also of considerable interest. 
That naturally forms a somewhat separate study, however, and is not included 
here. 

Solutions are obtained for various values of the stratification parameter 
S = N2/Q2,  where N is the Brunt-VaisLliG frequency and 52 is the rotational 
frequency. The effects of nonlinearities are investigated by varying the Rossby 
number. Most of the solutions are obtained with the top surface rotating in a 
sense which is opposite to that of the basic rotation. In  that case there is an 
upwelling of fluid at the outer side wall of the annulus. Particular attention is 
given to a study of the meridional, or upwelling, circulation and its dependence 
on the stratification parameter. 

The effects on the flow of different boundary conditions are also investigated. 
These are (i) a rotation of the top surface in the same sense as the basic rotation, 
in which case there is a downwelling of the fluid at  the outer side wall, (ii) an 
applied stress, rather than an applied velocity, driving, (iii) an applied heat 
flux, rather than a fixed temperature, at the top and bottom surfaces, and (iv) 
a specified temperature, rather than zero heat flux, at  the side walls. 

Linear-theory solutions for the steady motion in an annulus with the strati- 
fication parameter S in a range such that = @S > O( l) ,  where (T is the Prandtl 
number, have been worked out, with the aid of the narrow-gap approximation, 
and discussed in part 1 (Allen 1972).j- The condition 2 O(1) applies to most 
of the numerical solutions presented here and the results will be compared with 
the predictions of the linear theory. 

The requirement that the flow be axisymmetric, as in the present case, is a 
strong restriction. It was felt that it  might be of interest to extend these solutions 
to the study of three-dimensional flow fields, where, for example, the flow in 
the annulus would be three-dimensional because of non-axisymmetric driving 
or because of the development of non-axisymmetric flow instabilities. The 
choice of the numerical methods and the geometry used here was influenced by 
the idea of a future extension of this study t o  three-dimensional flows. 

2. Formulation 
We consider a viscous heat-conducting incompressible fluid which satisfies 

the Boussinesq approximation in a frame of reference rotating with uniform angu- 
lar velocity SZ = 52k and acted on by a gravitational acceleration g = -gf; 

7 In part 1, s, because of its natural occurrence, was referred to  as the stratification 
parameter. Here we use that designation for S. 



Strati$ed jluid in a rotating annulus. Part 2 

v . q  = 0, 
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which is antiparallel to the rotation vector. The governing equations are 

aqat + 4.  VT = K V ~ T ,  

P = POL1 - a(T - Toll, 

where q, p ,  p and T are respectively the velocity, pressure, density and tempera- 
ture of the fluid and are functions of position r and time t ;  v, K and a are respec- 
tively the constant kinematic viscosity, thermometric conductivity and coeffi- 
cient of thermal expansion; po and To are constant reference values of the density 
and temperature; f is a constant unit vector in the x direction in a cylindrical 
polar co-ordinate system ( r ,  8, x ) .  

The variables are non-dimensionalized in the following manner : 

q = Uq*, r = Hr*, t = Q-lt*, 

p = po-pogHz*+~poQ2H2r*2+p0 UQHp", 

T = To+AToT*, p = ~ ~ ( l + a A T ~ p * ) ,  
where po is a constant reference value of the pressure, U is a reference velocity 
and AT, is the basic temperature difference imposed over the height H of the 
annulus. 

The resulting dimensionless equations are (dropping the asterisks) 

v . q  = 0, (2.1a) 

+g(x/e)FpV(fixr12-EVx ( ~ x q ) ,  (2.1b) 

aTlat + Eq . VT = V ~ T ,  ( 2 . l c )  

p = -T ,  (2 .14  

aq/at+Eq.Vq+2fxq = -vp- (S /€)p& 

where B = U/QH is the Rossby number, E = v/QH2 is the Ekman number, 
(T = v / K  is the Prandtl number, F = QZH/g is the rotational Froude number, 
S = .N2/Q2 is the stratification parameter and N 2  = agATo/H is the square of 
the Brunt-Vaisda frequency. 

The standard annulus geometry is used. The axis of the annulus is aligned 
with the (vertical) rotation vector and is placed at the centre of rotation. The 
fluid is contained between two coaxial cylinders with inner and outer radii R, 
and R,, respectively. The top and bottom surfaces are formed by parallel hori- 
zontal planes a distance H apart. The boundaries are all rigid surfaces. Cylindrical 
polar co-ordinates ( r ,  8, z )  with unit vectors (P, 6, f) are used, where the z axis 
coincides with the axis of the annulus. The origin of co-ordinates is placed in the 
plane of the bottom surface so that, in terms of the dimensionless variables, 
the fluid is contained in the region (0 < z < 1, r, < r < r,), where rl = R,/H, 
r2 = R,/H. For this study we have chosen the relative dimensions to be 

R, = R2-Rl = H 

so that the annulus has a square cross-section and r ,  = r2 - rl = 1, r2 = 2. 
22-2 
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E € S (T F T1 t = Rl/m T2 ( = R , / H )  

0.0005 0.01-0.2 0.0-3.0 7.0 0.0 1 2 

TABLE 1. Range of parameters 

The simplifying assumption that P < 1 has been made and the centrifugal 
force term in (2.1 b)  has been neglected by formally setting P = 0. A value for the 
Prandtl number v = 7, which is close to that for water, was used. The Ekman 
number was chosen to be as small as was felt to be reasonable with the given 
grid spacing (see $6)  and a single fixed value of E = 0.0005 was employed. The 
values of the parameters S and E were varied in the solutions. The range of the 
parameters is summarized in table 1. 

The boundary conditions that are used for most of the solutions are 

q ( 2  = 1) = - (r/r,)  e, ( 2 . 2 ~ )  

q ( r  = TI) = q(r  = r,) = q(2 = 0 )  = 0,  

T ( z  = 0 )  = 0 ,  T (2  = 1 )  = 1, 

T, (Y = r,) = T, ( r  = r2) = 0, 

(2 .2b )  

( 2 . 2 4  

( 2 . 2 4  

where the subscripts denote partial differentiation. 
Alternative boundary conditions, used in place of one of the above, are 

q (2 = 1) = + (r/r,)  6, 
T , ( Z  = 0 )  = T,(z = 1) = 1, 

q , (x  = 1) = [C1+Cz(r-r,)]6, 

T (Y = rl) = T (r  = r2) = Z, 

(2 .3a )  

(2 .3b )  

( 2 . 3 ~ )  

( 2 . 3 d )  

where Cl and C, are O(1) constants. When conditions (2 .3 )  are used, ( 2 . 3 a )  or 
( 2 . 3 ~ )  replaces ( 2 . 2 a ) ,  (2 .3b )  replaces ( 2 . 2 ~ )  and (2 .3d )  replaces ( 2 . 2 4 .  In  ( 2 . 3 ~ )  
the motion is driven by an applied stress 7. In that case we assume 7 = r0r*, 
where 7,  is a reference value of the applied stress, and we define U = Hr,/p,v 
so that r+ = q,*. 6. The choice of C, and C, is discussed in $4.3 (see (4 .2 ) ) .  When a 
fixed heat, flux (2 .3  b )  is employed as a boundary condition on the top and bottom 
surfaces, AT, designates the temperature difference applied between these 
surfaces when the fluid is in static equilibrium and T,  E 1. We note that if AQ 
designates the relative angular velocity of the top surface then, with boundary 
condition (2 .2a )  on the velocity, we have (AQl/Q = s(H/R,) = ke. 

The finite-difference methods that have been used are those employed by 
Williams (1969, 1971) for the calculation of unsteady three-dimensional flows. 
The methods are discussed in the appendix. Approximate steady-state solutions 
(see $ 5 )  are obtained by integrating an initial-value problem forward in time from 
an initial condition of static equilibrium, q = 0, T = x (recall F = 0) .  The dif- 
ference equations are written in cylindrical-polar co-ordinates, where the 
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standard notation (u, v, w )  is used for the velocity components in the ( r ,  6,  x )  direc- 
tions. A uniform rectangular grid with 50 and 64 cells between boundaries in the 
r and z directions is used. The solutions presented are not for a perfect steady 
state. The variables are still changing very slowly with increasing time. These 
changes are apparently governed by diffusive processes. The variables appear, 
however, to be close to their final steady values. This matter is discussed in 
detail in 5 5 .  It is felt that the conclusions that will be drawn on the relative nature 
of the steady flow a t  different parameter values are not dependent on this lack 
of attainment of a perfect steady state. 

3. Numerical solutions 
A rough idea of the parameter values for which nonlinear effects can be ex- 

pected to be important may be obtained from an order-of-magnitude analysis. 
For this purpose, it is convenient t o  make the substitutions 

T = z + (E/S)  T,, ~p = ~ ( S / C )  z2 +p,, 

where Tp is the usual perturbation temperature in linear theory. Equation 
(2.1 c) then becomes, for steady axisymmetric flow, 

( 3 4  E q .  VT, +SW = (E/(T) V2Tp, 

q . VT, = u(aTp/ar) + w(aT,/aZ). where 

For E < I ,  the governing equations for the linear theory are obtained, after 
substituting (3.1), by neglecting the terms multiplied by E in ( 2 . 1 6 , ~ ) .  For in- 
creasing values of 8 the neglected nonlinear terms will eventually become impor- 
tant. It turns out, with the moderately large value of the Prandtl number 
((T = 7 )  used here, that nonlinear effects appear first in the energy equation 
(3.2).  We therefore consider the relative size of the two terms on the left-hand side 
of (3.2): 

L = O(eq. VT,)/O(Sw). (3.3) 

O(Ei)  < $(TS 6 O(1) 

According to linear theory for axisymmetric flow, with 6 < 1 and 

and with applied velocity driving, the variables in the interior have the scaling 
(Barcilon & Pedlosky 1967b) v = O(l) ,  Tp = O(l ) ,  u = O(E) and w = O(E/crS). 
As a result, we find (Pedlosky 1970) that L = O(e/S) and therefore that the equa- 
tions should be approximately linear if 

E/S < 1. (3.4) 

Note that this is the same as the condition that is obtained by requiring that the 
magnitude of the total perturbation temperature in (3.1) be small compared with 
the O(1) basic temperature. We remark, as is pointed out by Pedlosky (1970), 
that the above estimate is very much dependent on the fact that  the flow is 
assumed to be axisymmetric. This is basically because for axisymmetric flow 
the convection terms are small, since u < O( 1) and v(a/aO) E 0. 
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Boundary 
Solution S 6 conditions t B  t A  ~ m , ,  x 103 

s1 0.0 0.1 
s 2  0.5 0.1 
s 3  1.1 0.1 
s 4  3.0 0.1 
S 3 A  1.1 0.01 
S 3 B  1.1 0.2 
s 3 c  1.1 0.1 
S 3 D  1- 1 0- 1 
S 3 E  1.1 0.1 
S 3 F  1.1 0.1 

133.76 
260.65 
277,05 
251.56 
241.53 
264.99 
240.09 
218.06 
311.33 
220.87 

110.03 
212.06 
205.03 
203.54 
193.55 
216.97 
194.46 
167.09 
263.33 
171.34 

14.87 
3.76 
2.7 1 
1.80 
3.07 
2.69 
6.30 
3.44 
1.39 
5,72 

TABLE 2. A list of the solutions, with the values of the parameters 6 and S and the boundary 
conditions. t B  is the elapsed dimensionless time from the start of the initial-value problem. 
t A  is an intermediate time that is discussod in 3 5. ?,hmax is the maximum absolute value of 
the stream function, a t  ts, with ?,h = 0 on the boundaries. 

For stratifications in the range O( i )  < $08 < O(E-l), a different estimate is 
obtained. The interior variables have the scaling (Allen 1972) z, = O( I) ,  Tp = O( l) ,  
u = O(EdSB) and w = O(E). This leads to L = O(eaBS-4) and therefore to the 
following condition for approximate linearity: 

eaBS-4 < 1. (3.5) 

One of the purposes of this study is to calculate solutions with values of e 
that are large enough for nonlinearities to be important. The estimates (3.4) and 
(3.5) indicate that for S > O(l),  and a 2 O(1) the effects of stratification, com- 
bined with the geometrical restriction to axial symmetry, apparently maintain 
linearity for finite values of 8. An additional consideration in choosing values of 
6 ,  however, involves the question of the possible instability of a real flow to 
non-axisymmetric disturbances. I n  fact, the flows studied here can be expected 
to be susceptible, for increasing values of e, to the onset of baroclinic instability. 
For a8 < O( i), that problem has been studied by Pedlosky (1970). 

On the question of stability for as > O( I ) ,  there is, to our knowledge, no guid- 
ance available a t  the present from linear stability analyses or from laboratory 
experiments. I n  order to strike a balance, then, between a desire to study non- 
linear effects due to substantial values of B and the desire t o  calculate solutions 
which have some chance of being stable axisymmetric flows, the bulk of the solu- 
tions were calculated at the moderate value of = 0.1. As will be discussed in 
94, for applied velocity driving nonlinear effects appear with this choice of 6 ,  

even though it is smaller than that indicated by (3.5). This is apparently related 
to the specific nature of the flow generated by the non-zero values of the applied 
velocity a t  rl and r2. 

The solutions that have been calculated are listed in table 2 with the corre- 
sponding values of the parameters S and 8 and with the boundary conditions. 
The dimensionless time t,, which is the elapsed time from the start of the initial- 
value problem, is also given. Solutions Sl-S4 form a set where S is varied with € 
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held fixed at E = 0.1, whereas in solutions 8 3 ,  S 3 A  and S3B, E is varied, with 
S held fixed at  S = 1.1. In all of these cases the boundary conditions (2.2) are 
used. In solutions S3C-F, E and S are fixed at  e = 0.1 and S = 1.1 and the 
boundary conditions are varied. Conditions (2.3a-d) are used in place of the 
appropriate condition in (2.2). 

4. Discussion of solutions 
The general features of the solutions can be seen most easily from contour 

plots of the zonal velocity field v, the temperature field T and the stream function 
@ for the meridional circulation. The stream function is defined such that 
ru = @s and rw = - $T and is obtained by numerical integration of the velocity 
component u. Contour plots of v, T and @ in the annulus cross-section 

(1  < T < 2 , o  6 x < 1) 

for the solutions in table 2 at times t ,  are presented in figure 1.  The outer side 
wall (r = 2) is on the right-hand side of the plots. 

4.1. Variation of S 

Solutions S 1-54 are shown in figures 1 (a)-(d). In  this set of solutions the Rossby 
number e is held fixed ( E  = 0.1) and the stratification parameters S is varied. 
In  S 1 there is no stratification, S = 0, and the fluid is homogeneous. An investi- 
gation of the relative size of the terms in the numerical solution shows that the 
dynamics is governed by the balances of linear theory (Greenspan 1968, 
§§2.17-18). This is expected since E c E t  (see Barcilon 1970). 

Results which are familiar from linear theory are evident in the solution. The 
plot of v shows the adjustment of the interior zonal velocity to the velocity of 
the boundaries through thin Ekman layers on the top and bottom surfaces and 
through thicker boundary layers on the side walls. It also shows the x indepen- 
dence of v in the interior. The plot of @ shows a meridional flow which circulates 
from one Ekman layer to the other, through the interior and the side-wall bound- 
ary layers. The flow is upward, from the bottom surface to the top, in the outer 
side-wall boundary layer and downwards elsewhere. The almost vertical align- 
ment of the streamlines in the interior reflects again the z independence of the 
interior motion. The circulation in the boundary layer on the outer side wall has 

FIGURE 1. Contour plots of the zontal velocity field w, the temperature field T, and the 
stream function $ in the annulus cross-section (1 < r < 2, 0 < z < 1) for the solutions in 
table 2 at times t B .  The outer side wall (T = 2) is on the right-hand sideof the plots. With the 
exceptions noted below, the maximum and minimum values in the field and the intervals 
at which the contours are plotted are v,,, = 0, v,, = - 1.0, Aw = 0.1, T,, = 1.0, T,,, = 0, 
AT = 0.1, \ @ I m a x  as in table 2, @a = 0, A$ = O * l l ~ & , ~ .  For ( g ) ,  S 3 C ,  w,, = 1.0, 
wmin = 0, Aw = 0.1. For (h) ,  530, Tmas = 1.084, T,, = -0.015, yFmin = -2.88 x 
contours are plotted at  intervals of AT = 0-110 starting at  T = 0 and at intervals of A@ 
starting at  @ = 0. For (i) S 3 E ,  wmas = 0, wmin = -0.998; contours are plotted at intervals 
of Aw = 0.1 from w = - 0.1 to - 0-4. The occasional breaks in the contour lines are due to 
misfunctions in the plotting routine. 
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FI~URES 1 (a)-(e). For legend see p. 343. 
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FIGURES 1 (f)-(j). For legend see p. 343. 
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the same general form as that found from the solutions of the E i  and E )  layers 
of linear theory. It is predicted there, for this problem, that fluid will enter the 
E )  layer on the outer side wall from the Ekman layer on the bottom surface. 
Fluid also enters the E i  layer from the Ekman layer on the top surface. Both 
contributions flow from the E i  layer towards the wall to  the Eg layer and are 
transported to the Ekman layer on the top surface through an E* x E )  corner 
region. The flow near the outer side wall in figure 1 (a) can be seen to have this 
general character. The predicted thickness of the Ef layer is 6 N 2Ef 2: 0.3 and 
this is approximately the thickness found from the numerical solution. The 
accuracy of the resolution of the solution in the Ekman layers will be discussed in 
§6* 

The maximum value of @, with 21. = 0 on the boundaries, gives an indication 
of the strength of the meridional, or upwelling, circulation. These values are 
recorded, for all the solutions, in table 2. The relative values of $max will be com- 
pared to give an indication of the effects of stratification and of different bound- 
ary conditions on the upwelling circulation. 

I n  solution S2 the value of S is increased to S = 0.5. Note that, according to 
linear theory (Barcilon & Pedlosky 1967a), this is a case of substantial stratifica- 
tion, since gcrS = 0.875 = O( 1). In the plot of w (figure 1 b)  it can be seen that the 
interior zonal velocity is now very much z-dependent, and that it adjusts 
smoothly, with no boundary-layer structure, to the side-wall values. As is 
verified by an examination of the relative size of the terms in the equations, the 
interior flow is characterized by a geostrophic and hydrostatic balance which 
results in the satisfaction of the ‘thermal wind ’ relation 

The horizontal gradients of temperature can be seen in the plot of T. There is an 
Ekman layer on the top surface as shown by the balance of terms in the solution. 
This can also be seen in the contour plots from the adjustment of u to the interior 
values and from the concentrated meridional transport next to the top surface. 
Evidence of a much weaker Ekman layer on the bottom surface can also be seen 
in the plot of $ from the crowding of streamlines near that surface. 

The nature of the flow is changed appreciably from that in the unstratified 
case X = 0. The meridional circulation is still characterized by a concentrated 
upwelling into the top-surface Ekman layer at the outer side wall and by a cor- 
responding downwelling at the inner side wall. However, fluid is now fed to  the 
upwelling corner directly from the interior and there is no involvement of the 
flow in side-wall boundary layers. The circulation to and from the top-surface 
Ekman layer is completed through the interior and a much weaker Ekman layer 
on the bottom surface. The effects on the temperature field of the upwelling and 
downwelling can be clearly seen in the plot of T from the convective distortion of 
the isotherms near the top corners. The maximum value of the stream function 
is about one-quarter of that  in Sl, which shows that the stratification has 
substantially reduced the magnitude of the meridional circulation. 

The stratification is increased further to S = 1.1 in solution S3 (figure i c ) .  
I n  the plots of w and $, it can be seen that the Ekman layer remains on the top 
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surface but that it is weaker than in case SZ. This is roughly illustrated by the 
decrease in length of the nearly horizontal portion of the contour lines of v next 
to the top surface. The plot of T shows the interior, ‘thermal wind’, temperature 
gradients and the effects of upwelling and downwelling in the top corners. Com- 
pared with S2 ,  the increased stratification has led to a general decrease in the 
magnitude of the gradients in the dimensionless temperature. This is anticipated 
from the scaling of the perturbation temperature in linear theory (3.1) by the 
factor €18. The meridional circulation has crowded closer to the top surface 
than in S 2, and is seen t o  be dominated by relatively intense eddies in the upwell- 
ing and downwelling corners. The strength of the meridional circulation has 
decreased further and (S3) = O.lS$max (S 1) .  As will be discussed shortly, 
an examination of the size of the terms in the energy equation (2.1 c) shows that 
nonlinear effects are important near the upwelling corner. 

In  solution X4 (figure 1 d)  the stratification is increased to S = 3-0. The same 
trends, as shown in the differences between S 2  and S3, continue. The Ekman 
layer on the top surface is weakened. The general depth of penetration of the 
applied velocity and the magnitude of the temperature gradients have decreased. 
The meridional circulation is completed very close to the top surface and has 
approximately one-eighth the strength of the circulation with S = 0, i.e. 

Solutions S 1434 show the strong effect of stratification on the general nature 
of the flow and, in particular, on the meridional circulation. General results 
from the linear theory of Barcilon & Pedlosky (1967a), such as the decrease in 
strength of the surface Ekman layers and the vertical velocities, are illustrated. 
Specific predictions made in part 1 are also shown. In particular, the general form 
of the zonal velocity, outside the top-surface Ekman layer, was well illustrated 
there even with the assumption of an infinite-depth annulus. The nature of the 
meridional circulation, with eddies in the upper corners, was also predicted. The 
linear theory also indicated that the meridional circulation would be confined to a 
Lineykin layer of thickness of O(s-4) and that therefore the circulation would 
crowd closer to the top surface as the stratification was increased. This result is 
clearly illustrated in the numerical solutions. 

The strength of the upwelling circulation, as measured by $max, decreases 
sharpIy in the numerical solutions with increasing values of S. In  part I the de- 
pendence of $,,, on the parameters E and s was estimated from scaling argu- 
ments regarding the corner region and the result was N O[(E&s-*(I +8-&)]. 
If we compare the results of this estimate, which gives R = ?,hmax(S4)/ 
$max(S 3) = 0.505, with the results of the numerical solutions, from which we find 
R = 0.664, we see that, although the trend is correct, the agreement is not that 
close. The fact that nonlinear effects are important near the corners and, as 
shown below, affect the value of $,,,, probably influences the value of h? from 
the numerical solutions and precludes a useful comparison. 

@ma, (S4) = O.IWmax(S1)-  
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4.2. Variation of E 

In  solutions S 3 ,  S3A and S 3 B  the stratification is held fixed at  S = 1-1 while 
the value of the Rossby number is varied. In 8 3  A (figure 1 e )  a relatively small 
value of the Rossby number, E = 0.01, is used. An examination of the relative size 
of the terms in the equations shows that this solution is governed by the balances 
of linear theory. We note that the zonal velocity v has approximately the same 
distribution as inS 3. The interior horizontal temperature gradients are smaller in 
S 3  A ,  however, as is expected from the coefficients in the ‘thermal wind’ relation 
(4.i). There is also appreciably less distortion, relative to the interior, of the 
isotherms in the upwelling and downwelling corners. We also note that $max(S 3)  
is smaller than $-,,, (S3A). @ is a dimensionless stream function and the values 
would remain unchanged if the two solutions obeyed linear equations. The 
maximum meridional transport goes through the upwelling corner and the 
decrease in $max, in S 3 ,  is probably due to the increase of the vertical tempera- 
ture gradients in this region caused by the convective effects of the upwelling 
velocities and the fixed temperature boundary condition at  the top surface. 
This increase in the local stratification in the upwelling corner apparently de- 
creases the total meridional transport. It can also be seen that the local down- 
welling at  the inside corner is stronger in S 3 than in X 3A and this is probably due 
to the fact that the local stratification is weaker there in X 3. 

The same trends that were evidenced in the change from S 3 A to S 3  continue 
with the further increase of the Rossby number to e = 0.2 in S 3  B (figure If). 
$max(S 3B) is just slightly less than +max(S 3 )  but, as can be seen in the plot of 9, 
the magnitude of the downwelling is increased considerably in S 3 B. There is also 
now a significant horizontal temperature gradient in the interior and larger 
convective distortion of the isotherms in the upper corners. 

4.3. Variation of boundary conditions 

In solutions S 3 C-F (figures 1 g-j) the values of S and e are fixed at  the same values 
as in S 3 ,  i.e. S’= 1.1 and e = 0-1, but the boundary conditions are changed. 

In  S 3 C  (figure l g )  the rotation of the top surface (2.3a) has the same magni- 
tude as in 8 3 ,  but is in the opposite direction. As a result, the direction of the 
zonal velocity and the meridional circulation is reversed. There is now down- 
welling at the outer corner. These effects are easily seen from the slope of the iso- 
therms in the temperature plot. The character of the meridional circulation is 
changed appreciably compared with that in S 3 .  Note that, if the solutions were 
linear, the streamlines would have the same pattern in both cases. The magnitude 
of the meridional circulation is increased in S 3 C, i.e. $max(S 3 C) = 2*32llr,,,(S 3).  
Apparently, the local stratification near the outer corner is reduced considerably 
by the downwelling and as a result there is a relatively intense recirculating eddy 
in this region of decreased temperature gradient. A corresponding decrease in 
v,, compared with that in 53, is also noticeable in this region. 

In  solution S 3 0  (figure I h) the constant-temperature boundary condition on 
the top and bottom surfaces is replaced by one of a constant heat flux (2.3b). 
With a boundary condition on the heat flux, the isotherms can, of course, 
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intersect the top surface and, evidently, as a result there are weaker 
temperature gradients in the upwelling corner. The pattern of the upwelling 
circulation is different from that in 8 3 .  The circulation is stronger here, i.e. 
@max(S3D) = 1.27@ma,(S3), and most of the flow is concentrated in the upwell- 
ing corner. There is less transport in the top-surface Ekman layer. In  fact, as can 
be seen from a comparison of the change in vertical gradients of v near the top 
surface, the Ekman layer is substantially weaker in this case. Since horizontal 
gradients of temperature are possible at the top surface, whereas with a fixed con- 
stant surface temperature they are not, the interior flow, which obeys the 
‘thermal wind ’ equation, can itself have larger vertical gradients of zonal 
velocity there. The weakening of the top-surface Ekman layer, compared with the 
fixed temperature case S3,  was predicted by linear theory in part 1. It was also 
predicted there, however, that the magnitude of the meridional transport 
would decrease by a factor of g-* compared with case S 3. The fact Chat the trans- 
port increases here can be attributed to the nonlinear behaviour of the flow 
in the top corner regions. In  the bottom corner, by the outer side wall, there is a 
region of very weak meridional flow which is circulating in a direction opposite 
to that of the main upwelling motion. 

In  solution S 3 E  (figure 1 i)  the driving mechanism of an applied velocity at  the 
top surface is changed to an applied stress ( 2 . 3 ~ ) .  In  an attempt to get a solution 
which would be comparable with S 3, the magnitude of the applied stress in S 3 E 
was determined by taking the final computed values of v, ( r  = 1.47, z = 1) and 
vz,(r = 1-47, z = 1) from solution S3 and choosing C, and C, in ( 2 . 3 ~ )  so that the 
applied stress v,, which is linear in r ,  would have these same values. The result is 
that C, = - 1.27 and C, = - 3.23 and 

v, ( z  = 1) = - 1.27 - 3.23(r - l), u,(z = 1) = 0. (4.2) 

Note that the applied stress is non-zero at both r,  and r2 and that the maximum 
absolute value is lv, ( r  = r2, z = 1)( = 4.5. 

In  the stress-driven case S 3 E the meridional circulation is still characterized 
by upwelling from the interior into the top-surface Ekman layer at  the outer 
side wall. The general qualitative features of the flow are not greatly different 
from those in S 3 .  The region of upwelling, however, is spread out over a larger 
distance from the corner in this case than it was with the applied velocity driving. 
The change in slope of the isotherms in the upwelling region, relative to that in 
the interior, also appears to be less here, presumably corresponding to the weaker 
upwelling velocities and the more diffuse region of upwelling. Direct comparisons 
of the two cases are hard to make since the Rossby numbers based on local values 
differ. It does appear, however, that an applied velocity driving with a non-zero 
value at  the side wall results in an upwelling flow which is more concentrated 
toward the corner than is the case with an applied stress which also has a non- 
zero value at  the side wall. 

In S 3 E  there is a relatively uniform rate of outflow from the top-surface 
Ekman layer to the interior, as evidenced by the regular spacing of streamlines 
in that region, This is predicted, for this stratified problem (part l), by 
Ekman-layer theory and is a result, of course, of the linear variation of the 
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FIGURE 2.  Profiles of the zonal velocity 2) at times tg, from the solutions S 1 , s 3 ,  5 3 0  and 
S 3 F ,  along r = 1.49. 

applied stress. We note that the outflow from the Ekman layer in the applied 
velocity case is different because it is not directly related, in the same manner as 
it is in a homogeneous fluid, to the functional form of the applied velocity and the 
interior vorticity (see part 1). The maximum absolute value of 'u appears at the 
top surface at  r = 1.69, z = 1 and is IvlmaX = 0.498. 

In  solution S 3  F (figure I j )  the temperature boundary condition at the side 
wall is changed from one of no heat flux to one where the temperature is held 
fixed at  the initial value T = z, equation ( 2 . 3 d ) .  The character of the flow that 
results is appreciably different from that in S 3, where the side walls are thermally 
insulated. There is a relatively strong Ekman layer on the top surface here. The 
values of the zonal velocity in the bottom part of the interior are larger than in 
8 3  and there is an Ekman layer on the bottom surface. A substantial portion 
of the meridional circulation is completed entirely in boundary layers. This flow 
circulates through Ekman layers on the top and bottom surfaces and through 
thin boundary layers on the side walls. A n  examination of the terms in the equa- 
tions shows, as is expected from the linear-theory results of Barcilon & Pedlosky 
(1967a), that the balance in these side-wall layers is that of the buoyancy layer. 
The rest of the meridional transport is completed in the interior with again an 
eddy type of motion near the upwelling corner. The strength of the meridional 
circulation is about twice that in S3, i.e.?+bma,(S3F) N 2.1?+bm,,(S3). The tem- 
perature plot shows the slope of the isotherms in the interior and the return of the 
temperature, in the side-wall buoyancy layers, to the specified values at the wall. 



Stratijed $uid in a rotating annulus. Part 2 35 1 

The effect of convection in the side-wall boundary layers, near the upwelling 
and downwelling corners, is also evident from the shape of the isotherms 
there. 

In  figure 2,  the zonal velocity v from solutions Sl, S3, S 3 D  and S 3 F  is 
plotted as a function of z along the line r = 1.49. Several of the features that were 
noted from the contour plots are shown clearly here. The solution for v from 8 1,  
for which S = 0, exhibits a z-independent behaviour in the interior and rapid 
variations in Ekman layers at  the top and bottom surfaces. For S3, there is a 
relatively continuous variation of v with x .  There are signs of weak Ekman layers 
at  the surfaces. Near the top and bottom, the profile has regions where v, is 
relatively small. This is apparently a result of the constant temperature bound- 
ary condition on the top and bottom surfaces and the satisfaction of the ‘thermal 
wind’ relation (4.1) by the interior flow. This region of small v, is absent in the 
profile of v from S D 3, where there is a fixed heat flux boundary condition on the 
horizontal surfaces. In  that profile, there appears to be only an extremely small 
adjustment of the interior flow to the surface values in boundary layers. The 
profile from S 3 P, where the side-wall temperature is specified, shows much 
stronger Ekman layers, compared with S 3, at both surfaces and, consequently, 
a generally smaller gradient of v in the interior. Regions near the top and bottom 
where v, is relatively small are evident here also. 

4.4. Relative size of terms 

More information on the nature of the flow in the solutions is available from a 
comparison of the relative sizes of the terms in the equations. Several conclusions 
that have been reached with this procedure have already been mentioned. Some 
illustrative, specific comparisons are presented below. 

Auseful equation to examine is that for the component of vorticity QB) = u, - w,, 
in the azimuthal direction: 

[a&,/at] + s[(D(u)  - r 1 v 2 ) ,  - D(w),] - 2v, + (AS’/€) T, - E[J(u),- (V2w),] = 0. (4.3) 

(a)  (6) (c) (4 (4 

The notation is defined in the appendix. This equation is derived in finite- 
difference form directly from the difference equations for u and w. In  figure 3 
the terms (a)-(e) in (4.3) are plotted for solution S 3  along the line r = 1.47. 
It can be seen that the interior is characterized by a balance of terms (c) and (d) 
which represents the ‘thermal wind’ equation (4.1). At a distance of approxi- 
mately 8, 21 0.1 from both the top and the bottom surface the viscous term 
( e )  starts to increase in magnitude. Closer to the boundaries, the primary balance 
is that of terms (c) and ( e ) .  This reflects the Ekman-layer nature of the flow in this 
region next to the boundaries as can be verified from a comparison of the terms in 
the individual momentum equations. The nonlinear convection term (b )  is 
relatively small throughout. The unsteady term (a )  is not plotted, since it lies 
right along the zero line. The magnitude of (a) is typically about times the 
dominant terms. The vorticity equation (4.3) is thus well characterized by a quasi- 
steady balance. 
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(c) : 

FIGURE 3. Terms in the vorticity equation (4.3) at time t ~ ,  
from solution S 3 ,  along r = 1.47. 

- 
FIGURE 4. Terms in the energy equation (4.4) at time t g ,  

from solution 8 3 ,  along r = 1-47. 
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FIGURE 5. Terms in the energy equation (4.4) a t  times t B ,  (a )  from solution 8 3  
and ( b )  from solution S 3 C, along z = 0.836. 
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In  figures 4 and 5, terms in the energy equation (2.1 c) are plotted. The balances 
in this equation are of interest because they show the nonlinear effects and also 
the extent of the unsteadiness that remains in the solutions. To show clearly 
the balance of linear theory, when it exists, (2.1 c) is written in the form 

Tt + E[D(T) - W] + EW = ( E / a )  V2T 

(a) ( b )  (c) (4 
(4.4) 

and the values of the terms (a)-(d) are plotted. 
In figure 4 the terms in (4.4) from solution S 3  are plotted along the Iine 

T = 1.47. This plot shows that the unsteady term (a) is relatively small near the 
boundaries but that it is not small in the interior. Near the centre of the annulus 
cross-section, (a) is primarily balanced by term (c), involving the vertical velocity. 
The magnitudes of the vertical velocities in the interior are, however, so small 
(W(T = 1.49, x = 0.5) = - 1.4 x 10-4) that the time rate of change of the tempera- 
ture field is also very small. In  the upper portion of the annulus, z > 0.7, the 
balance is primarily between terms (c) and (d) .  This is the balance of linear theory 
for steady flow. A further breakdown of the heat conduction terms (d)  shows that 
the major contribution for z 0.7 is from T,. This is expected from the analysis 
in part 1, which showed that term (c) would be balanced by T, in a Lineykin 
layer near the top surface. Right next to the top surface, z 2 0.9, the relative 
value of the nonlinear term ( b )  increases. Here, however, the flow is governed 
primarily by Ekman-layer balances and the temperature field is effectively 
uncoupled from the dynamics. 

In figure 5(a )  the terms in (4.4) from S 3  are plotted along z = 0.836, which is 
across the upper portion of the annulus. The relative magnitude of the unsteady 
term (a)  is fairly small here. In  the interior, towards the inner wall 1-1 < T < 1-6, 
the balance is between the linear terms (c) and (d) .  However, near the outer wall 
in the upwelling region (where the value of (c) is positive), the nonlinear term ( b )  
is important. An examination of the terms in the vorticity equation (4.3) in this 
region shows that the ‘thermal wind’ relation (4.1) holds and therefore that the 
nonlinearities in the energy equation (4.4) are coupled with the dynamics. It is 
interesting to compare this plot for X 3 with a corresponding one for S 3 C (figure 
5 b ) ,  where there is downwelling at  the outer wall. It can be seen that the non- 
linear term is relatively larger and more important in the downwelling case. 
This is presumably related to the stronger meridional circulation in S3C.  It can 
also be seen, from term ( c ) ,  that the downwelling is concentrated closer to the 
wall than was the upwelling in S 3. The relative magnitude of the nonlinear terms 
shows an increase, for both solutions, if the value of z along which the terms are 
plotted is increased to x = 0.914. 

It is useful t o  compare qualitatively the magnitudes of the nonlinear effects 
in the other solutions. We do this by mentioning the differences shown in the 
plots, corresponding to figure 5, of the terms in (4.4) along z = 0.836. The plot 
for S3B, the case of largest Rossby number, shows features similar to those in 
figure 5 (a)  for S 3 ,  but the relative magnitude of the nonlinear term is increased 
considerably in the upwelling region and is much larger at  the inner wall in the 
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downwelling region. In  the linear solution S 3 A ,  the nonlinear term ( b )  is, of 
course, relatively small across the entire cross-section. 

As the stratification is increased in solutions S2-54, the relative magnitude 
of the nonlinear term (b) in the upwelling region, at the point of its maximum 
absolute value, appears to decrease. The relative size of ( b )  in the downwelling 
region also decreases. This apparently is a result of the general reduction in 
strength of the meridional circulation by increased stratification. A comparison 
with S 3  of the fixed heat flux case S 3  D shows that the relative magnitude of the 
nonlinear term ( b )  is much larger in S 30 .  This is presumably related to the weaker 
local stratification and stronger upwelling in that case. In the stress-driven 
solution X 3 E ,  the relative value of ( b )  is much smaller than in S3 and this is 
probably due to the fact that the upwelling is weaker and more diffuse in S 3 E. 
In S 3 F ,  the nonlinear effects are not noticeable at this value of x ,  where the 
upwelling flow is mainly confined to a thin side-wall boundary layer and the 
linear terms (c) and (d )  balance 

We have seen, in the applied-velocity-driven cases, that nonlinear effects in 
the energy region (2.1 c) are important in the upwelling region at  Rossby numbers 
e of 0.1 and 0-2, although the order-of-magnitude analysis in 0 3 gave no indication 
that this would be the case. The nonlinear effects are presumably related to the 
specific nature of the flow caused by an applied velocity boundary condition with 
non-zero values at  the corners. This behaviour might have been anticipated from 
an examination of thelinear-theory solutions in part 1, since they exhibit singular 
behaviour in the meridional velocity components u and w at  a corner where the 
applied velocity is non-zero. 

The linear-theory solutions may be used to check the relative magnitude of the 
neglected nonlinear terms in ( 2 . 1 ~ )  as the corner is approached. Let us consider 
a specific case from part 1 with boundary conditions similar to (2.2) (i.e. in the 
notation of that paper, solutions (3.14) and (3.16) with 0, = I and D, = - 1). 
The narrow-gap approximation is used there and the Cartesian co-ordinates 
(x, x )  replace ( r ,  2). If we examine the values of the ratio of terms 

L = (b) / (c)  = €q.VT,/Sw = s(uT,,+wT,,)/SW 

along the line 1 --x = a(1-X) = 7, which goes through the upwelling corner 
(x = 1, x = l), we find, for 7 < 1, 

e4S( I + S-4) (1 - 3%r2) 
L!Z 

~S7rCq 1 + a-2) (1 + sa-2) (&-2 - 1)  ' 

L increases as 7 decreases and the nonlinear terms increase in relative magnitude 
as the corner is approached. If we choose a = i f l a  (W = 0 for a = S*) so that 
the line is located in the upwelling part of the Lineykin layer, we find that I LI E i 
for 

€cT( 1 + B-4) 
1.47. = ;rrB*( I + 4s-1) 

For the values of the parameters in 83, this gives q0 2: 0.13. We do not  attach 
much significance to the exact value of r0 here, but we do think the general result 

23-2 
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that the nonlinear terms increase in relative magnitude as the corner is ap- 
proached and the order of magnitude of qo are probably indicative of the flow 
behaviour. A corresponding comparison should be made for the terms in the v 
momentum equation (A 1 c ) ,  i.e. for L, = ~ ( u v ~  + wv8)/2u. We find that 

€( 1 + s-3) (1 - 3Ra-2) 
q27ra( 1 + a-2) (1 + Ra-2). 

I,, N 

For a = @&+, lL,l/ILl 2~ 1 . 5 / ~  and for 8 3 ,  IL,I N I for qov N 0.028. In  the 
numerical solutions there was effectively no indication of nonlinearity in the v 
momentum equation. The nonlinear term was negligibly small just about every- 
where. Very highin theupwelling corner, along z = 0.914, it increased somewhat, 
but was still small relative to the other terms. 

5. Approximate steady-state solutions 
As we have mentioned, the solutions presented are not for a perfectly steady- 

state situation. The variables are still changing slowly with time. We have called 
these solutions ‘ approximate steady-state ’ solutions. The intended meaning 
of that terminology is that the solutions are sufficiently close to a steady state 
that information of interest on the relative nature of the steady solutions, at 
different parameter values, can be extracted. We discuss this matter in more 
detail below. 

The solutions were obtained by numerically integrating an initial-value prob- 
lem forward in time from an initial condition of static equilibrium, q = 0, 
T = z (with the exception of # 3 B ,  for which 8 3 at t = t A  was the initial condition). 
The solutions were integrated to the dimensionless times t A  (table 2) at  which 
point it appeared that an approximate steady state had been reached. At that 
point, however, a small O(Ar) (see appendix) error in the application of the 
boundary condition on v at the inner side wall r = rl was discovered and corrected. 
The solutions were then integrated from t, to t,. There was a subsequent local 
adjustment of the solution near the inner wall to the resultant change in stress 
at rl in the equation for v (A 3c) .  The adjustment took place relatively rapidly 
and was mainly confined to a region near rl .  The total change was small and 
away from the vicinity of the inner wall the solutions appeared to continue, 
without noticeable distortion, the same trend towards a steady state as before 
t,. At t,, the solutions again appeared to be close to steady-state values. 

In  connexion with the question of obtaining an ‘approximate steady-state ’ 
solution, results from investigations of the spin-up of rotating stratified fluids 
(Holton 1965; Pedlosky 1967; Walin 1969; Sakurai 1969; Siegmann 1971) are 
useful. According to these studies, rotating stratified fluids respond initially to a 
change in boundary conditions, such as in the problems here, on a time scale 
t = O(E-4). They subsequently adjust to a steady state on a longer, diffusive 
time scale t2 = O(E-l).  A rough order-of-magnitude estimate for the decay time 
on the t ,  scale, with E = 5 x is t,, = E-I = 2000. It is however evidently 
not necessary to integrate out to times t N 2000 to find the features of the steady- 
state flow. Two factors are important: first, the actual numerical size of the con- 
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stant h in the relation t Z D  = (AE)-l for the decay time and second, the relative 
size, on the t, scale, of the transient component and the steady-state solution. 
The latter depends, of course, on what happens on the shorter t ,  time scale. 
These points are illustrated in detail below for one case for which an analytical 
solution to the complete unsteady problem may be obtained. 

We consider the linear, initial-value, spin-up problem for the boundary con- 
ditions in S3D. We assume that S = O(1) and E < 1. For simplicity, we use the 
narrow-gap approximation and employ Cartesian co-ordinates as defined in 
part 1 (i.e., the fluid is contained in the region 0 < x Q 1 , O  Q z < I ,  the velocity 
vector q has components (u, v, w) in the (x, y, x )  directions, and a/ay = 0). 

The governing equations are (2.1), with the substitution of (3.1) and terms 
multiplied by E and P neglected. The initial conditions are 

q = 0,  Tp = 0, (5 . la ,  b )  

and the boundary conditions are 
m 

q ( x  = I )  = j~,(x)  = j 2 V,,sinnmx, 
n=l 

( 5 . 2 ~ )  

q (x = 0 , l )  = q (2 = 0) = 0, (5 .2b)  

(5 .2c ,  d )  

We first consider the t ,  = O(E-*) time scale and define 71 = tE4. This problem 
is similar in form to problems treated previously (e.g., Walin 1969), and we just 
outline the solution. The governing equation for the lowest order pressure, 
p p  = F ( T ~ )  + ..., is 

T,,(z = 0 , l )  = 0, T,,(x = 0 , l )  = 0. 

( F x z  + (4/S) F Z Z L l  = 0, (5.3) 

with initial condition 
and boundary conditions 

P(T1 = 0) = 0 (5 .4a )  

- S-1pz2171 = $(VTz - $pZZ) at  z = 1, (5 .4b )  

-S-ljiz,l = &13,, at z = 0, (5.4c) 

FXr1 = 0 a t  x = 0 , l .  ( 5 . 4 4  

This problem may be solved with the use of the Laplace transform. The solution 
is 

-Gosh yn~(e-anr1-e-Pn71 cosnmx, (5.5) )I 
- -  

where y, = +nnS*, a, = A, + &,,I, = xn - a,, A, = 7, Goth Y ,  and 
- 
8, = y,(sinh y,)-l. 

For 7, 9 1, the solution reaches a quasi-steady state given by 

- V&sinhy,z 
p 1 : - 2  2 -- cos nrx. ,=, nn sinh y, 
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The mode (n = 1) that decays most slowly with time has, for S = 1.1, E, = 2.4 
and = 1.1. The largest decay time results from /3, and, for E = 5 x is 
t,, N 41. The temperature field adjusts to satisfy the boundary conditions 
( 5 . 2 ~ )  at x = 0 ,  1 in diffusion layers of thickness O(E2) (Pedlosky 1967). The 
correction for p in these layers is O(Ei). 

We next consider the t, = O(E-l) time scale and define 7 2  = tE. The governing 
equation for the lowest order pressure, p p  = @(T,) + . . . , is (Pedlosky 1967) 

wm + ( 4 P )  @z& = V2[17,, + (41Cm @,,1, (5.7) 

where V2 = a2/ax2 + a2/az2. The boundary conditions on @ from (5.2) (part 1) are 

( 5 . 8 ~ ~  b )  

( 5 . 8 ~ ~  d )  

pz(Z = 1) = 2vT, $ 5 ~ ~ ( z  = 1) = 0;  

PZ(2 = 0 )  = 0, $5& = 0) = 0; 

@& = 0 , l )  = p2&G = 0 , l )  = 0. (5.8e,f 1 
The initial condition for $5 comes from matching with the solution on the 71 scale, 
i.e. 

p(72 + 0 )  = p ( T 1  00). (5.9) 

To solve for $5 we define $5 = PS+@T? (5.10) 

where ps is the final steady-state solution (part l), 

and fiT is a transient component. The initial condition for @, is 

P d 7 2  + 0)  = F(71+ a) -PS. (5.12) 

The boundary conditions for $5, are homogeneous and are given by (5.8) with 
( 5 . 8 ~ )  replaced by @,,(z = 1) = 0. The solution (Pedlosky 1967) is 

m a 0  

@, = 2 A,, sin mnz cos nnxe-hmn 7 2 ,  ( 5 . 1 3 ~ )  

(5.13 b)  

m = l n = l  

where 

and 

A,, = +(n2 + m2) [n2 + (410s) m2] [n2 + (4/S) m21-1 

A,, = 4( - l),V,,(m/n) r 2 { ( m 2  + &Sn2)-l - [1 - (4/vS)J-l 

x [(m2 + n2)-l - (4/osS) (m2 + $mS'n2)-1]). 

For S = 1.1 and E = 5 x loM4, the decay time for the most slowly decaying 
mode (m = 1, n = 1) is t ,  = (All@--, = (6-46E)-l = 310. Note that this is quite a 
bitsmallerthanE-l= 2000.ForavalueoftB = 210wefbdexp(-A1,Et,)= 0.51, 
which is not that large a decay. However, the importance of jjT in clouding the 
steady-state picture also depends on its magnitude relative tops. If we compare, 
for S = 1.1, the initial ( T ~  = 0 )  magnitude of the most slowly decaying transient 
mode (n = 1, m = 1) (5.13) with the magnitude of the n = 1 component of the 
steady-state solution (5.11), we find, for example, a t  z = 0.5, that 

@Tll/PSl( = GTll/vSl) a- 
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FIGURE 6. Values from solution S 3 of Fv = T - z as a function of time from the calculation 
of the unsteady flow. The upper curve is for F D  (r  = 1.49, z = 0.743); the lower curve is for 
Fv (T = 1.49, z = 0.492). 

The transient mode f i T l l  therefore has an initial magnitude which is generally 
small compared with psl. Since the higher order modes decay much more rapidly 
than f j T l l ,  we would expect that, for moderate values of T ~ ,  fi, would be small 
compared with ps and that the characteristics of ps  could therefore be determined 
from an examination of fi. Furthermore, because p ,  satisfies the boundary con- 
ditions, the lower modes of @, will be small near the boundaries where the major 
part of the upwelling circulation, which is the main feature of interest, takes 
place. In  addition, the higher modes, with more structure, which could affect 
the details of the upwelling circulation, decay rapidly. Assuming that the relative 
magnitudes of ps and j jT indicate the relative magnitudes of the other flow 
variables, we conclude that, for this problem, numerical integration times 
t ,  N 200 should be adequate to reveal the important features of the steady solu- 
tion. 

For the other boundary conditions in the numerical solutions, analytical 
results on the t, time scale are not as readily obtained. However, from an examina- 
tion of the numerical solutions, we draw a similar conclusion. For the velocity- 
driven cases there is, at  times t,, essentially a quasi-steady balance in all of the 
equations except the energy equation (2.1 c), as is illustrated in figures 3,4 and 5 
for 8 3 .  In  (2.1 c), the unsteady term is relatively small near the top and bottom 
surfaces where, in the case of the upwelling region near the top surface, it was 
desirable to draw some conclusions on the relative size of the nonlinear terms. 
In  the stress-driven case S 3 E ,  the unsteady term in the v momentum equation 
is not negligible and has about the same relative size as the unsteady term in the 
temperature equation, as shown in figures 4 and 5 for S3 .  To give a further in- 
dication of the time variation that remains in the solutions, e.g. in S 3, the values 
at two points of the difference in temperature from the initial conditions, 
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are plotted as a function of time in figure 6. It can be seen that at  the end of the 
computation the final steady values have not been reached. However, the 
rate of change is decreasing and it appears that a large fraction of the total change 
has been accomplished. (Note that there is no noticeable change in behaviour 
after tA.) 

We have also checked these ideas by numerically integrating, on a coarse 
grid with 25 x 32 mesh cells, the solutions S2 and S3 out to times tB 1000. 
These solutions agree well (see 5 6) with the original he-grid solutions. The results 
showed that (i) the changes in the solutions between t = 211 and t = 1037 were 
relatively small and that (ii) the qualitative differences in the solutions S 2  and 
S 3  at t = 1037 were also shown at t = 211. 

In  summary, it is clear that there will be small quantitative changes in the 
original solutions, governed by diffusive processes, during the final approach to 
a steady state. The numerical methods that we used, however, are inefficienk 
for the calculation of diffusion processes (see appendix) and would require the 
expenditure of a great deal of computer time for the calculation of perfectly 
steady solutions. We felt that this was not worthwhile and therefore terminated 
the computations a t  a point where we thought the important elements of the 
steady solutions were sufficiently resolved. We feel that the remaining changes 
would definitely not alter the essential features of the solutions, especially their 
relative nature, and therefore would not alter the qualitative conclusions that 
we have drawn. 

6.  Numerical resolution 
With regard to the accuracy of the resolution of the solution by the finite- 

difference approximations, the number of mesh cells was 50 and 64 in the r and z 
directions. The value of the Ekman number was set so that there were approxi- 
mately five cells in the Ekman layers in solution S1 with S = 0. Outside the 
corner regions, the largest gradients were exhibited in the Ekman layers in S 1. 
To check the resolution there, a comparison of the exact solution for the linear 
Ekman layer and the results from the numerical solution S 1 at time tA  was made 
forthe boundary layer on the top surface, along the line r = 1.48. The linear-theory 
solution 

v = V,-[(V,-VB)cos~- U1sin6]e-~, (6.1a) 

u = U, - [ U, cos 6 + (5 - V,) sin 61 e-5, (6 .1b)  

where 6 = E-4 (1 -2) and where U, and V, and V, are the interior and boundary 
values, respectively, was calculated using the interior values from the numerical 
solution. The results are compared in figure 7. It can be seen that the agreement 
is quite good. The only substantial disagreement is in the value of u at  the first 
grid point, half a cell length from the boundary, where the magnitude of the error 
is 23.9 %. As the stratification is increased the Ekman layers become weaker 
and the gradients smaller. It is felt that the resolution was sufficiently accurate 
for our purposes. 
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F I a m  7 .  A comparison of the exact linear solution (6.1% 6 )  (solid lines) and the results 
( ) from the numerical solution S 1 at time t~ for the Ekman layer on the top surface a t  
r = 1.47 (for w) and r = 1.48 (for u). 

In  most of the solutions there is a concentrated flow very close to the upwelling 
corner. It cannot be expected that all the details of the flow in that region are 
accurately resolved. However, the corner region is, according to linear theory, 
essentially passive. Since the difference approximations conserve mass exactly, 
there will be overall mass conservation in the corner region and the lack of resolu- 
tion in this area should, we hope, not affect, to a significant extent, the remainder 
of the flow field. 

It was unfortunately not practical to check the resolution of the solution by 
reducing the grid size. A fast Fourier transform that is restricted to a number of 
points that is a power of two was used in the z direction in solving the Poisson 
equation for the pressure. A reduction of the grid size in the z direction was there- 
fore restricted to a doubling of the number of points in that direction. This would 
have resulted in a total number of grid points that was too large for the computa- 
tional facilities. The calculation of solutions with a larger grid size was possible, 
of course, and this was done for solutions S.2 and S 3  with 25 x 32 mesh cells. 
Calculations were carried out to time t ,  = 1037. Considering the coarseness of 
this grid, the agreement with the original solutions, as judged by a comparison 
of the contour plots, was reasonably good. The flows were qualitatively very 
similar. The most sensitive plot was that of $, where, although the pattern was 
similar, the exact location of the streamlines differed. The values of 

$max x lo3 = 3.68, 2.83 

were close to those in the original S 2  and S 3 .  It is felt that the good qualitative 
agreement of the coarse-grid solutions indicated that the original solutions have 
enoughresolution to resolve the features about which we have drawn conclusions. 
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7. Summary 
The axisymmetric, mechanically driven, approximately steady motion of a 

stratified fluid in a rotating annulus has been studied with the use of numerical 
solutions to finite-difference approximations. Changes in the flow field caused by 
variations in the stratification S, the Rossby number e and the boundary condi- 
tions were investigated. Particular attention was given to a study of the changes 
in the meridional, or upwelling, circulation. It was found that the upwelling 
circulation is strongly dependent on the stratification S.  For S = 0, the upwelling 
fluid comes from the bottom in a side-wall boundary layer. For larger values of 
X (with 8 = 0(1)), the nature of the circulation changes. Upwelling continues at  
the outer side wall, but the fluid is fed to the surface layer directly from the in- 
terior, with no involvement in a side-wall boundary layer. A large part of the 
circulation is confined to a region near the surface. As S is increased, the upwelling 
circulation weakens and the region it occupies shrinks towards the top surface. 

Nonlinear convective effects in the energy equation are observed in the up- 
welling and downwelling regions at  a Rossby number € = 0.1. These are 
apparently related to the specific nature of the flow which is produced by an 
applied velocity with non-zero values at the side walls. Increasing the Rossby 
number leads to larger temperature gradients in the interior and to larger con- 
vective distortion of the isotherms in the upwelling and downwelling corners. 
Nonlinear effects appear to be decreased by an increase in the stratification. 
Also, the nonlinear effects are larger, and the meridional circulation is noticeably 
stronger, in regions where the local stratification is decreased by the fluid motion. 
This is illustrated by a comparison of upwelling and downwelling cases a,nd by a 
comparison of upwelling with a fixed temperature and with a fixed heat flux 
boundary condition on the top surface. 

The computations were made with the computer facilities of the National 
Center for Atmospheric Research (NCAR), which is sponsored by the National 
Science Foundation. The computations were initiated while the author was a 
scientific visitor at NCAR during the summer of 1970. The author wishes to 
thank Dr J. W. Deardorff, Dr D. G. Fox, Dr S. A. Orszag and Dr D. K. Lilly for 
helpful discussions of numerical methods and computational techniques. This 
research was partially supported by the Atmospheric Sciences Section, National 
Science Foundation, under NSF grant GA-18109, and by the Oceanography Sec- 
tion, National Science Foundation, under NSF grant GA-30592. 

Appendix. Numerical methods 
The governing equations (2 .1)  for axisymmetric flow in cylindrical-polar 

co-ordinates, with (u, v, w) as the velocity components in the (r ,  8, z )  directions, 
are 

r-l(r,u)r + w, = 0, 

~t + ~ ( D ( u )  -r-'v2) - 2~ = -p,. + EJ(u), 

@la) 

(Alb)  
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vt + e(D(w) + r-luv) + 2u = EJ(v) ,  ( A 1 4  

w~+ED(w) = -p2+(S/e)T+EV2w, ( A  1 4  

T,+&(T) = (E/g)V2T,  ( A  1 e )  

where D($) = r-l(ru$), + (W$),> (A2a) 

(A2b,c) J ( $ )  = [r-l(r9)711. + $22, V2$ = T-l(&)T + $zz, 
and where the nonlinear convection terms have been written in conservation 
form with the use of (2.1 a).  

Finite-difference approximations to ( A  1 )  are solved for an initial-value prob- 
lem. The finite-difference methods that we have used are those which Williams 
(1969, 1971) has employed effectively for the calculation of unsteady three- 
dimensional flows. The r, z plane is divided into uniform rectangular cells with 
sides of length Ar and AZ which are parallel, respectively, to the r and x axes. The 
centres of the cells form a grid at which p ,  T and v are defined. The velocity 
components u and w are defined at points on the cell boundaries such that the 
u points are centred on the vertical (r = constant) boundaries and the w points 
are centred on the horizontal (z  = constant) boundaries. These points then form 
a staggered grid system. Boundary surfaces of the annulus are placed along the 
cell boundaries. The gridextends half a cell length beyond the physical boundaries. 
Values of the variables at  these external points are defined by the boundary con- 
ditions (A4)  and (A5) .  The time variable is also divided into increments of size 
At such that t = nAt, where n is an integer. We use the notation 

9(t) = 9 W )  = p, 
where $ represents any dependent variable. 

(1969),  if the following difference and averaging operators are defined: 
The difference equations can be written in a compact form, as in Williams 

ax$ = [$(z+gAz)-$( , -gAx)I /Az ,  aXx$ = 8,8,$, 
- 
4s = +[$(x + *AX) + $(x - @z)] ,  

where z represents any independent variable. 
The difference approximations to ( A  1) are 

r-18,(ru) + 8,w = 0, (A3a)  

(A3br 

(A3c)i 

( A 3 4  

st$ + e[r-18,(firZ') + 8z(i2"'2) - ( ~ ~ r - ~ ) ' ]  - 2V' = - 8,p + E{8,[r-16,(ru)] + 8zsu}lagr 

8, ~t + e[r-18,(ruEr) + 8,(wVz) + r-2v(%)'] + 2r-l(E)r = E{8,.[r-l8,.(rw)] + 822w},,,, 

8 , s  + e[r-1cYr(fizg,) + ~,(~PTP)] = - 8,p + (S/s) F+ E[r-Vr(r8,w) + 82zw]lag, 
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If the time difference is centred on the level n, then the other terms in ( A 3 ) ,  
with the exception of the viscous and heat conduction terms, are evaluated at  
level n. The diffusive terms are evaluated at the level n - 1 and are designated by 
a subscript 'lag'. 

The boundary conditions (2 .2 ) ,  in difference form, are 
- 

w = z * = G " = O ,  T B = O  a t  z = O ;  ( A 4 4  

at z = 1; (A4b) 

. u = E r = V r = O ,  arT=0 at r = 1 , 2 .  ( A 4 4  

w = ~2 = 0, = - &-, = 1 

The conditions ( 2 . 3 ~ - d )  become, respectively, 

Vz(z = 1) = gr, (A 5 a )  

(A 5 b)  

( A 5 4  

( A  5 d )  

&T(Z = 1) = S z T ( z  = 0) = 1, 

6,W(Z = 1) = C1+C2(r- I), 

T'(T = 1) = T'(r = 2 )  = X .  
- - 

If we assume that the variables are known at time levels less than n + 1, then 
u, w, w and T at level n + 1 may be obtained from (A 3 b-e). The pressure at  n + 1 
is obtained from the solution to it Poisson equation, as described by Williams 
(1969), which is derived from the requirement that the continuity equabion 
( A 3 a )  be satisfied at level n + 2 .  To derive that equation we write ( A 3 b , d )  in 
the shorthand form 

(un+2- u n ) / 2 4 t  = - Srpn+l+ GUn+l*n, 

(wn+2 - wn)/24t = - 82~n+' + G Wn+'yn, 

(A6a) 

(A6b) 

where GU and GW represent the remaining terms. If the continuity equation 
(A 3 a) a t  level n + 2 is formed using the velocity components defined by (A 6a, b) ,  
we find that 

0 = Y-'C$.(TZL~+~) + S z : ~ n + 2  = ( r - 1 8 T ( ~ ~ 7 L )  +6,wn) - 2At [~-l8,(rS,pn+l) 
+ 8sBpn+1 - ~ - ~ & ~ ( r G U n + l * n )  - 82GWn+1,n], (AT) 

or r-lSr(r&p"+l) + 622pn+1 = [r-1Sv(Tun) + Ssw"]/24t 

+r-16,(rGUn+1*n)+6,GWn+1,n. (A 8) 

The pressure at  n + 1 is obtained by solving the Poisson equation (A 8). The con- 
tinuity equation ( A 3 a )  at level n is left on the right-hand side to correct for the 
effect of any error in its solution at level n. 

It is worthwhile to point out a simplification in the application of boundary con- 
ditions to (AS). On all the boundaries, in this problem, the normal component of 
velocity vanishes. A direct application of this condition to the velocity com- 
ponent in the continuity equation (A7), for a mesh cell next to the boundary, 
results immediately in an application of the proper condition to the Poisson 



Stratified Jluid in a rotating annulus. Part 2 365 

equation (A 8 )  for the pressure.? For example, the continuity equation for a cell 
centred at (ro, zo) is 

r-'&,(rzt) + [W(Zo + $Ax) - w(z0 - $Ax)]/Ax = 0. 

If, however, there is a boundary along the line x = z,, - $Ax, then w(zo - $Ax) = 0 
and the difference equation (A6b) for w(z0-&Ax) does not have to be written. 
For this cell, (A7) becomes 

0 = ~ - ' 6 ~ ( r ~ " + ~ )  + w " + ~ ( x ~  + $Az)/Ax 

= r-16T(run) + wn(zo + &Az)/Az - 2At[r-16T(rSTpn+1) 

+ Szpn+l(xo + $Ax)/Ax- r-lG,(rGU"+l,n) - G Wn+l.n(zo + QAz)/Az]. (A9) 
The values of p ,  u, w, GU and G W involved in (A9) are all defined at points inside 
the boundary. When this procedure is followed for all the boundary cells, the 
resulting set of difference equations for the pressure involves only values of the 
above variables at  interior points and is ready for solution. Boundary conditions 
for the pressure do not have to be considered, since the proper boundary condi- 
tion has already been applied through the vanishing of the normal component 
of velocity. Iterative or direct methods can be used immediately to solve the 
resulting equations. 

An additional advantage of not using an equation for the normal component 
of velocity on the boundary is that the viscous terms can be written as they are in 
(A3) and the equations still only require variables defined at external grid points 
a distance of half a mesh length outside the boundary. Although Williams (1969) 
defines the viscous terms through the vorticity (i.e. - EV x V x q), which results 
in (A 3 6 )  in the replacement of 6,[r-16,.(ru)] by - 6,w and in (A 3 d )  in the replace- 
ment of aZzw by -r-16,.(dsu), this is not absolutely necessary. While the con- 
tribution to the forcing term in the Poisson equation (AS), from the difference 
approximation of the viscous terms using the vorticity , vanishes identically, as 
does the differential expression, the contribution from the formulation in (A3 b, d )  
will also vanish if (A3a) at  level n is satisfied. Since the error in the solution to 
(A3a),  when direct methods are used to solve (AS), is limited to round-off error 
and is therefore usually very small, there appear to be no disadvantages in the 
use of ( A 3 b , d ) .  A possible advantage of the formulation in (A3b,d), where 
the viscous terms involve the same variable as the time derivative, is that if a 
different method for treating the time differencing of the viscous terms, e.g. 
an implicit method, is sought, the spatial differencing in (A 3 b, d )  might prove 
more convenient. 

To solve (A8) we used a direct method similar to that described by Williams 
(1969). The variables were expanded in a cosine series in the z direction. If the 
boundary conditions for (As) are applied as we have discussed, the pressure and 
the forcing function can be expanded immediately, without further manipulation, 
in the cosine series given by Williams (1969). This is because the finite cosine 
series expansion for p ,  which satisfies the difference equations (A 8) in the interior 
(i.e. results in a separation of variables), also satisfies the difference equations, 

This fact was used by Harlow & Welch (1966) in deriving boundary conditions for the 
preesure, but their procedure was different. 
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e.g. (A9), at the boundary cells. A fast Fourier transform routine from the Library 
of the Computing Facility of the National Center for Atmospheric Research was 
used to expand and to invert the variables in the cosine series. Gaussian elimina- 
tion was used in the r direction, with proper consideration given to the solution 
for the degenerate mode. 

It was felt that a better estimate of the stability condition for (A3) should be 
obtained. For that purpose, the following linearized set of difference equations 
in Cartesian co-ordinates is considered: 

S,U+G,W = 0, (A 10a) 

(A10b) 

(A 10c) 

(A 10d) 

(A 1Oe) 

8, C? + €Dd(U) - 2Vx = - aXp + Evi  ulag, 

&t'$$-eDd(V) + 2Ez = EV;v,ag, 

at$+ eDd(w) = - 8,p + !I$, + EVi wiag, 

b'$; + eDd(Tp) + ,.S'TP = (E/v) VZTpplag, 

where Dd($) = Uo~xP+%&P,  V i $  = %,$+4,$, 
and where Uo and To are constants. 

We attempt to obtain a von Neumann necessary condition (Richtmyer & 
Morton 1967, $4.7) for the stability of (AlO) by examining the behaviour of a 
typical Fourier component. We therefore let 

u = Uo6"f, v = v,.pf, w = wo["f, ( A l l )  

Tp = T p o t " f ,  P = Po '3, 
where 

and where uo, vo, wo, Tpo and po are constant coefficients and is an amplification 
fact or. 

The substitution of (A 11) in (A 10) results in a set of five homogeneous linear 
equations for the five coefficients. In  order for there to be non-trivial solutions, the 
determinant of the coefficients must vanish. This results in an algebraic equation 
for c. For stability, it is required that 161 < 1 and this gives conditions on the time 
step. These conditions can be found easily if it is assumed that the Prandt] 
number (r = 1. In  that case, the equation for ,$ reduces to 

f = exp { i [ ( a / A x )  x + (/3/Az) 2]>, 0 < a < 2n, 0 < /3 < 2n, 

6-  2Ati( -P & G ) [ -  (1 + 2AtH) = 0, (A 12) 

where P = e(Uoqsina+Wossin/3), (A13a) 
4s2 C O S ~  (+a) sin2 ( i p )  + Sq2 cos2 (+/3) sin2 ($a) 

G = (  q2 sin2 (+a) + s2 sin2 (+& (A 13b) 

H = 2 E [ q 2 ( c ~ ~ ~ - l ) + s 2 ( ~ ~ ~ / I - 1 ) ]  (A 13c) 
and q = l /AX,  s = l/Az. 

In  order for the solution of (A 12) to have ([I < 1, the coefficients must satisfy 
the inequalities 

(1+2AtH( G 1 (A14a) 

and 2AtI-PkGI < 12+2AtH(. (A 14b) 
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At < [4E(q2 + s2)]-l. 
From (A 14a) we find that 

With the use of (A 15) we obtain, from (A lab), 

At < min (P+G+H)-l. 
O<a<Zn, 0</992n 

A sufficient condition for the satisfaction of (A 16) is 
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(A 15) 

which implies (A 15). Recall that we assumed v = 1. It appears from (A 15) that 
the condition for (T > 1 should be satisfied if (A17) is satisfied. Because of the 
approximations, this condition should naturally be used only as a guide, with 
local values of u and w replacing U, and W,. 

In our problem, by far the most restrictive contribution to the limit on the 
time step in (A17) is from the diffusion terms. The next most restrictive con- 
tribution, in this relatively low Rossby number axisymmetric flow, is from the 
condition max (2, Sf) from the inertial-internal waves. In  the calculations (per- 
formed before the derivation of (A17)) we used At = C,,(8Es2)-l = 0.061C0, 
where C, = 0.7-0.8. Because of the factor C, and because Ar = 1.2862, this 
value of At was usually smaller than that given by (A 17). To prevent the ‘time 
splitting’ instability (Williams 1969) the variables a t  levels n+ 1 and n, and at  
n and n - I, were averaged, and the time dropped back $At every 30 time steps. 
On the CDC 6600, 1-63 s were required to calculate one time-step, with 55 % of 
that time used for the solution of the Poisson equation. 

It has been pointed out that the size of the time step is limited essentially by 
the contribution to the stability condition arising from the viscous and heat 
diffusion terms. Without this contribution, At could have been increased typic- 
ally, in this problem, by a factor of about 5. It seems therefore that a more efficient 
method of treating the time differencing of the viscous terms should be developed 
for use with the other desirable features of the scheme. The present method of 
lagging these terms suffers on three counts. 

(i) If we assume, for simplicity, that the grid spacing is equal in both direc- 
tions and if we consider only the major contribution to (A 17), tye have At A$/ 
8E. Although the time step is limited by the square of the spatial grid increment, 
the usual argument is that, if the Ekman number E is very small, this condition is 
not restrictive. However, in the annulus problem there are Ekman layers, which 
have a dimensionless thickness 6 N 2E4 on the horizontal surfaces. The number 
of grid points in an Ekman layer is approximately NB 2: 2E&/Az. It follows that 
Az 2~ 2E*/NB and that therefore At < 4Ni2 .  This relation shows that the time 
step is essentially limited by the inverse square of the number of points in the 
boundary layers, regardless of the value of E.  For a reasonable number of points 
in the Ekman layers, this condition turns out to be very restrictive. It becomes 
more restrictive if additional resolution is desired in these layers. 

(ii) The truncation error, due to the time differencing of the diffusion terms, 
is of the order of the time step At. A more accurate scheme with an error of order 
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At2 (which is the truncation error from the time differencing of the rest of the 
terms in the equations) would be desirable. 

(iii) The h a 1  approach to a steady solution in rotating stratified fluids is 
governed by diffusion processes and, as a result, the total number of time steps 
required to reach a steady state is excessive. The dimensionless time scales for 
diffusion processes in (A 1) are td 2: E-l and aE-l. The total number of time steps 
required to reach a steady state is therefore approximately tdlAt = 8u/Az2 (for 
a > 1). A similar estimate holds for the attainment of a steady solution of the 
simple heat diffusion equation when the same type of difference scheme is used. 
The explicit method is well known to be inefficient in that case and it is just as 
inefficient for the Navier-Stokes equations. 

Perhaps fractional-steps methods (Richtmyer & Morton 1967, 5 8.9) could be 
used for the diffusion terms and incorporated successfully with the other desirable 
features of the scheme in (A3). This matter, however, requires further study. 
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